Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunohorizons ; 8(2): 182-192, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386594

RESUMO

T cells in the human female genital tract (FGT) are key mediators of susceptibility to and protection from infection, including HIV and other sexually transmitted infections. There is a critical need for increased understanding of the distribution and activation of T cell populations in the FGT, but current sampling methods require a healthcare provider and are expensive, limiting the ability to study these populations longitudinally. To address these challenges, we have developed a method to sample immune cells from the FGT utilizing disposable menstrual discs which are noninvasive, self-applied, and low in cost. To demonstrate reproducibility, we sampled the cervicovaginal fluid of healthy, reproductive-aged individuals using menstrual discs across 3 sequential days. Cervicovaginal fluid was processed for cervicovaginal cells, and high-parameter flow cytometry was used to characterize immune populations. We identified large numbers of live, CD45+ leukocytes, as well as distinct populations of T cells and B cells. Within the T cell compartment, activation and suppression status of T cell subsets were consistent with previous studies of the FGT utilizing current approaches, including identification of both tissue-resident and migratory populations. In addition, the T cell population structure was highly conserved across days within individuals but divergent across individuals. Our approach to sample immune cells in the FGT with menstrual discs will decrease barriers to participation and empower longitudinal sampling in future research studies.


Assuntos
Infecções por HIV , Feminino , Humanos , Adulto , Reprodutibilidade dos Testes , Genitália Feminina , Subpopulações de Linfócitos T
2.
bioRxiv ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38370684

RESUMO

T cells in the human female genital tract (FGT) 2 are key mediators of susceptibility to and protection from infection, including HIV and other sexually transmitted infections. There is a critical need for increased understanding of the distribution and activation of T cell populations in the FGT, but current sampling methods require a healthcare provider and are expensive, limiting the ability to study these populations longitudinally. To address these challenges, we have developed a method to sample immune cells from the FGT utilizing disposable menstrual discs which are non-invasive, self-applied, and low-cost. To demonstrate reproducibility, we sampled the cervicovaginal fluid (CVF) 3 of healthy, reproductive-aged individuals using menstrual discs over three sequential days. CVF was processed for cervicovaginal cells, and high parameter flow cytometry was used to characterize immune populations. We identified large numbers of live, CD45+ leukocytes, as well as distinct populations of T cells and B cells. Within the T cell compartment, activation and suppression status of T cell subsets were consistent with previous studies of the FGT utilizing current approaches, including identification of both tissue resident and migratory populations. In addition, the T cell population structure was highly conserved across days within individuals but divergent across individuals. Our approach to sample immune cells in the FGT with menstrual discs will decrease barriers to participation and empower longitudinal sampling in future research studies.

3.
Nat Microbiol ; 8(9): 1641-1652, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563289

RESUMO

The human vaginal microbiota is frequently dominated by lactobacilli and transition to a more diverse community of anaerobic microbes is associated with health risks. Glycogen released by lysed epithelial cells is believed to be an important nutrient source in the vagina. However, the mechanism by which vaginal bacteria metabolize glycogen is unclear, with evidence implicating both bacterial and human enzymes. Here we biochemically characterize six glycogen-degrading enzymes (GDEs), all of which are pullanases (PulA homologues), from vaginal bacteria that support the growth of amylase-deficient Lactobacillus crispatus on glycogen. We reveal variations in their pH tolerance, substrate preferences, breakdown products and susceptibility to inhibition. Analysis of vaginal microbiome datasets shows that these enzymes are expressed in all community state types. Finally, we confirm the presence and activity of bacterial and human GDEs in cervicovaginal fluid. This work establishes that bacterial GDEs can participate in the breakdown of glycogen, providing insight into metabolism that may shape the vaginal microbiota.


Assuntos
Amilases , Microbiota , Feminino , Humanos , Vagina/microbiologia , Bactérias/genética , Bactérias/metabolismo , Microbiota/fisiologia , Glicogênio/metabolismo
4.
Microbiol Resour Announc ; 12(6): e0035823, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37219419

RESUMO

Microorganisms colonizing the human vaginal mucosa are associated with healthy states, as well as conditions such as bacterial vaginosis and infection-associated preterm birth. Here, we report complete genome sequences of 37 bacterial isolates from the human vaginal tract.

5.
NPJ Biofilms Microbiomes ; 8(1): 60, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858888

RESUMO

While deprivation of dietary fiber has been associated with adverse health outcomes, investigations concerning the effect of dietary fiber on the gut microbiome have been largely limited to compositional sequence-based analyses or utilize a defined microbiota not native to the host. To extend understanding of the microbiome's functional response to dietary fiber deprivation beyond correlative evidence from sequence-based analyses, approaches capable of measuring functional enzymatic activity are needed. In this study, we use an activity-based protein profiling (ABPP) approach to identify sugar metabolizing and transport proteins in native mouse gut microbiomes that respond with differential activity to the deprivation or supplementation of the soluble dietary fibers inulin and pectin. We found that the microbiome of mice subjected to a high fiber diet high in soluble fiber had increased functional activity of multiple proteins, including glycoside hydrolases, polysaccharide lyases, and sugar transport proteins from diverse taxa. The results point to an increase in activity of the Bifidobacterium shunt metabolic pathway in the microbiome of mice fed high fiber diets. In those subjected to a low fiber diet, we identified a shift from the degradation of dietary fibers to that of gut mucins, in particular by the recently isolated taxon "Musculibacterium intestinale", which experienced dramatic growth in response to fiber deprivation. When combined with metabolomics and shotgun metagenomics analyses, our findings provide a functional investigation of dietary fiber metabolism in the gut microbiome and demonstrates the power of a combined ABPP-multiomics approach for characterizing the response of the gut microbiome to perturbations.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Bifidobacterium/metabolismo , Proteínas de Transporte/metabolismo , Fibras na Dieta , Fezes/microbiologia , Camundongos , Mucinas/metabolismo , Mucinas/farmacologia , Açúcares/metabolismo , Açúcares/farmacologia
6.
Chembiochem ; 22(8): 1448-1455, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33314683

RESUMO

Microbial bile salt hydrolases (BSHs) found in the intestine catalyze the deconjugation of taurine- and glycine-linked bile salts produced in the liver. The resulting bile salts are biological detergents and are critical in aiding lipophilic nutrient digestion. Therefore, the activity of BSHs in the gut microbiome is directly linked to human metabolism and overall health. Bile salt metabolism has also been associated with disease phenotypes such as liver and colorectal cancer. In order to reshape the gut microbiome to optimize bile salt metabolism, tools to characterize and quantify these processes must exist to enable a much-improved understanding of how metabolism goes awry in the face of disease, and how it can be improved through an altered lifestyle and environment. Furthermore, it is necessary to attribute metabolic activity to specific members and BSHs within the microbiome. To this end, we have developed activity-based probes with two different reactive groups to target bile salt hydrolases. These probes bind similarly to the authentic bile salt substrates, and we demonstrate enzyme labeling of active bile salt hydrolases by using purified protein, cell lysates, and in human stool.


Assuntos
Acrilamida/química , Amidoidrolases/metabolismo , Ácidos e Sais Biliares/metabolismo , Corantes Fluorescentes/química , beta-Lactamas/química , Acrilamida/síntese química , Acrilamida/metabolismo , Amidoidrolases/química , Ácidos e Sais Biliares/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Microbioma Gastrointestinal , Humanos , Hidrólise , Estrutura Molecular , beta-Lactamas/síntese química , beta-Lactamas/metabolismo
7.
Methods Enzymol ; 638: 89-107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32416923

RESUMO

Understanding the roles that individual species or communities play within a microbiome is a significant challenge. The complexity and heterogeneity of microbiomes presents a challenge to researchers looking to unravel the function that microbiomes serve within larger environments. While identification of the species and proteins present in a microbiome can be accomplished through genomics approaches, strategies that report on enzyme activity are limited. In this chapter, we describe the application of small molecule chemical probes in the isolation and subsequent characterization of microbiome subpopulations based on enzymatic function. We will cover protocols for labeling microbes with appropriate probes, microbiome sample preparation, and using fluorescence-activated cell sorting to isolate subpopulations based on function. We hope that the strategies outlined here will serve as a resource for researchers studying the functional role that microbiomes play in the gut and soil.


Assuntos
Microbiota , Genômica
8.
Nat Commun ; 11(1): 1502, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198389

RESUMO

Although certain microbial lipids are toxins, the structural features important for cytotoxicity remain unknown. Increased functional understanding is essential for developing therapeutics against toxic microbial lipids. Group B Streptococci (GBS) are bacteria associated with preterm births, stillbirths, and severe infections in neonates and adults. GBS produce a pigmented, cytotoxic lipid, known as granadaene. Despite its importance to all manifestations of GBS disease, studies towards understanding granadaene's toxic activity are hindered by its instability and insolubility in purified form. Here, we report the synthesis and screening of lipid derivatives inspired by granadaene, which reveal features central to toxin function, namely the polyene chain length. Furthermore, we show that vaccination with a non-toxic synthetic analog confers the production of antibodies that inhibit granadaene-mediated hemolysis ex vivo and diminish GBS infection in vivo. This work provides unique structural and functional insight into granadaene and a strategy to mitigate GBS infection, which will be relevant to other toxic lipids encoded by human pathogens.


Assuntos
Hemólise , Lipídeos/química , Polienos/química , Nascimento Prematuro/microbiologia , Infecções Estreptocócicas/metabolismo , Adulto , Animais , Linfócitos B , Toxinas Bacterianas/química , Vacinas Bacterianas , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Lipídeos/imunologia , Lipídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polienos/imunologia , Gravidez , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus agalactiae , Vacinação
10.
Sci Rep ; 9(1): 1359, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718677

RESUMO

The microbiota of the mammalian gut plays a dynamic role in controlling host physiology. The effect of gut microbiota activity on host health is particularly evident in the case of bile homeostasis. Bile is produced by the host and is modified by the gut microbiota, which impacts the net hydrophobicity of the total bile acid pool, and also modulates host signaling pathways. A key mechanism by which the microbiota modify bile is through deconjugation of bile salts through bile salt hydrolase (BSH) enzymatic activity, which is postulated to be a prerequisite for all further microbial metabolism. BSH activity in the gut is largely considered to be beneficial for the host, and genes encoding BSHs are found in the genomes of many taxa found in over-the-counter probiotics. Despite the therapeutic relevance of this enzyme, there is no sensitive and simple assay for continuous monitoring of BSH activity, and there are no non-destructive means of characterizing its activity in whole cell or microbial community samples. Herein, we describe a continuous fluorescence assay that can be used for characterization of BSH activity with purified protein, cell lysates, whole cells, and in human gut microbiome samples. The method is a "turn-on" reporter strategy, which employs synthetic substrates that yield a fluorescent product upon BSH-dependent turnover. This assay is used to show the first in vivo characterization of BSH activity. We also demonstrate continuous, non-destructive quantification of BSH activity in a human fecal microbiome sample containing recombinant BSH.


Assuntos
Amidoidrolases/metabolismo , Ensaios Enzimáticos/métodos , Microbioma Gastrointestinal , Ácidos e Sais Biliares/síntese química , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Fezes/microbiologia , Fluorescência , Humanos , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Front Microbiol ; 10: 3123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038561

RESUMO

Group B Streptococcus (GBS) is a ß-hemolytic, Gram-positive bacterium that commonly colonizes the female lower genital tract and is associated with fetal injury, preterm birth, spontaneous abortion, and neonatal infections. A major factor promoting GBS virulence is the ß-hemolysin/cytolysin, which is cytotoxic to several host cells. We recently showed that the ornithine rhamnolipid pigment, Granadaene, produced by the gene products of the cyl operon, is hemolytic. Here, we demonstrate that heterologous expression of the GBS cyl operon conferred hemolysis, pigmentation, and cytoxicity to Lactococcus lactis, a model non-hemolytic Gram-positive bacterium. Similarly, pigment purified from L. lactis is hemolytic, cytolytic, and identical in structure to Granadaene extracted from GBS, indicating the cyl operon is sufficient for Granadaene production in a heterologous host. Using a systematic survey of phyletic patterns and contextual associations of the cyl genes, we identify homologs of the cyl operon in physiologically diverse Gram-positive bacteria and propose undescribed functions of cyl gene products. Together, these findings bring greater understanding to the biosynthesis and evolutionary foundations of a key GBS virulence factor and suggest that such potentially toxic lipids may be encoded by other bacteria.

12.
Curr Top Microbiol Immunol ; 420: 1-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30406866

RESUMO

Microorganisms living in community are critical to life on Earth, playing numerous and profound roles in the environment and human and animal health. Though their essentiality to life is clear, the mechanistic underpinnings of community structure, interactions, and functions are largely unexplored and in need of function-dependent technologies to unravel the mysteries. Activity-based protein profiling offers unprecedented molecular-level characterization of functions within microbial communities and provides an avenue to determine how external exposures result in functional alterations to microbiomes. Herein, we illuminate the current state and prospective contributions of ABPP as it relates to microbial communities. We provide details on the design, development, and validation of probes, challenges associated with probing in complex microbial communities, provide some specific examples of the biological applications of ABPP in microbes and microbial communities, and highlight potential areas for development. The future of ABPP holds real promise for understanding and considerable impact in microbiome studies associated with personalized medicine, precision agriculture, veterinary health, environmental studies, and beyond.


Assuntos
Técnicas Microbiológicas/métodos , Microbiota/fisiologia , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Animais , Humanos , Proteoma/química
13.
J Am Chem Soc ; 141(1): 42-47, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30541282

RESUMO

Commensal microorganisms in the mammalian gut play important roles in host health and physiology, but a central challenge remains in achieving a detailed mechanistic understanding of specific microbial contributions to host biochemistry. New function-based approaches are needed that analyze gut microbial function at the molecular level by coupling detection and measurements of in situ biochemical activity with identification of the responsible microbes and enzymes. We developed a platform employing ß-glucuronidase selective activity-based probes to detect, isolate, and identify microbial subpopulations in the gut responsible for this xenobiotic metabolism. We find that metabolic activity of gut microbiota can be plastic and that between individuals and during perturbation, phylogenetically disparate populations can provide ß-glucuronidase activity. Our work links biochemical activity with molecular-scale resolution without relying on genomic inference.


Assuntos
Microbioma Gastrointestinal , Sondas Moleculares/metabolismo , Glucuronidase/metabolismo , Sondas Moleculares/química , Xenobióticos/metabolismo
14.
J Clin Invest ; 128(5): 1985-1999, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29629904

RESUMO

Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and ß-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.


Assuntos
Células Epiteliais/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Vagina/imunologia , Vaginose Bacteriana/imunologia , Animais , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Camundongos , Camundongos Knockout , Infecções Estreptocócicas/patologia , Vagina/microbiologia , Vagina/patologia , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/patologia
15.
J Infect Dis ; 217(6): 983-987, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29244079

RESUMO

Group B streptococci (GBS) are Gram-positive bacteria that are a leading cause of neonatal infections. Most invasive isolates are ß-hemolytic, and hemolytic activity is critical for GBS virulence. Although nonhemolytic GBS strains are occasionally isolated, they are often thought to be virulence attenuated. In this study, we show that a nonhemolytic GBS strain (GB37) isolated from a septic neonate exhibits hypervirulence. Substitution of tryptophan to leucine (W297L) in the sensor histidine kinase CovS results in constitutive kinase signaling, leading to decreased hemolysis and increased activity of the GBS hyaluronidase, HylB. These results describe how nonpigmented and nonhemolytic GBS strains can exhibit hypervirulence.


Assuntos
Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Histidina Quinase/química , Histidina Quinase/metabolismo , Humanos , Hialuronoglucosaminidase/metabolismo , Recém-Nascido , Leucina , Camundongos , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/genética , Triptofano , Virulência
16.
J Infect Dis Med ; 2(2)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29034376

RESUMO

Infection of the amniotic cavity remains a major cause of preterm birth, stillbirth, fetal injury and early onset, fulminant infections in newborns. Currently, there are no effective therapies to prevent in utero infection and consequent co-morbidities. This is in part due to the lack of feasible and appropriate animal models to understand mechanisms that lead to in utero infections. Use of mouse and rat models do not fully recapitulate human pregnancy, while pregnant nonhuman primate models are limited by ethical considerations, technical constraints, and cost. Given these limitations, the guinea pig is an attractive animal model for studying pregnancy infections, particularly as the placental structure is quite similar to the human placenta. Here, we describe our studies that explored the pregnant guinea pig as a model to study in utero Group B Streptococci (GBS) infections. We observed that intrauterine inoculation of wild type GBS in pregnant guinea pigs resulted in bacterial invasion and dissemination to the placenta, amniotic fluid and fetal organs. Also, hyperhemolytic GBS such as those lacking the hemolysin repressor CovR/S showed increased dissemination into the amniotic fluid and fetal organs such as the fetal lung and brain. These results are similar to those observed in mouse and non-human primate models of in utero infection, and support use of the guinea pig as a model for studying GBS infections in pregnancy.

17.
Sci Immunol ; 1(4)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27819066

RESUMO

Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are ß-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor.

18.
mBio ; 7(3)2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27353757

RESUMO

UNLABELLED: Preterm birth increases the risk of adverse birth outcomes and is the leading cause of neonatal mortality. A significant cause of preterm birth is in utero infection with vaginal microorganisms. These vaginal microorganisms are often recovered from the amniotic fluid of preterm birth cases. A vaginal microorganism frequently associated with preterm birth is group B streptococcus (GBS), or Streptococcus agalactiae However, the molecular mechanisms underlying GBS ascension are poorly understood. Here, we describe the role of the GBS hyaluronidase in ascending infection and preterm birth. We show that clinical GBS strains associated with preterm labor or neonatal infections have increased hyaluronidase activity compared to commensal strains obtained from rectovaginal swabs of healthy women. Using a murine model of ascending infection, we show that hyaluronidase activity was associated with increased ascending GBS infection, preterm birth, and fetal demise. Interestingly, hyaluronidase activity reduced uterine inflammation but did not impact placental or fetal inflammation. Our study shows that hyaluronidase activity enables GBS to subvert uterine immune responses, leading to increased rates of ascending infection and preterm birth. These findings have important implications for the development of therapies to prevent in utero infection and preterm birth. IMPORTANCE: GBS are a family of bacteria that frequently colonize the vagina of pregnant women. In some cases, GBS ascend from the vagina into the uterine space, leading to fetal injury and preterm birth. Unfortunately, little is known about the mechanisms underlying ascending GBS infection. In this study, we show that a GBS virulence factor, HylB, shows higher activity in strains isolated from cases of preterm birth than those isolates from rectovaginal swabs of healthy women. We discovered that GBS rely on HylB to avoid immune detection in uterine tissue, but not placental tissue, which leads to increased rates of fetal injury and preterm birth. These studies provide novel insight into the underlying mechanisms of ascending infection.


Assuntos
Hialuronoglucosaminidase/metabolismo , Complicações Infecciosas na Gravidez/microbiologia , Nascimento Prematuro/microbiologia , Infecções do Sistema Genital/microbiologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/enzimologia , Líquido Amniótico/microbiologia , Feminino , Humanos , Recém-Nascido , Inflamação , Placenta/imunologia , Placenta/microbiologia , Gravidez , Infecções do Sistema Genital/complicações , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/isolamento & purificação , Útero/imunologia , Útero/microbiologia , Vagina/microbiologia , Fatores de Virulência
19.
Pathogens ; 4(4): 708-21, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26506394

RESUMO

Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to ß-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to ß-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of ß-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections.

20.
Sci Adv ; 1(6): e1400225, 2015 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-26425734

RESUMO

Ascending infection of microbes from the lower genital tract into the amniotic cavity increases the risk of preterm birth, stillbirth, and newborn infections. Host defenses that are critical for preventing ascending microbial infection are not completely understood. Group B Streptococcus (GBS) are Gram-positive bacteria that frequently colonize the lower genital tract of healthy women but cause severe infections during pregnancy, leading to preterm birth, stillbirth, or early-onset newborn infections. We recently described that the GBS pigment is hemolytic, and increased pigment expression promotes GBS penetration of human placenta. Here, we show that the GBS hemolytic pigment/lipid toxin and hyperpigmented GBS strains induce mast cell degranulation, leading to the release of preformed and proinflammatory mediators. Mast cell-deficient mice exhibit enhanced bacterial burden, decreased neutrophil mobilization, and decreased immune responses during systemic GBS infection. In a vaginal colonization model, hyperpigmented GBS strains showed increased persistence in mast cell-deficient mice compared to mast cell-proficient mice. Consistent with these observations, fewer rectovaginal GBS isolates from women in their third trimester of pregnancy were hyperpigmented/hyperhemolytic. Our work represents the first example of a bacterial hemolytic lipid that induces mast cell degranulation and emphasizes the role of mast cells in limiting genital colonization by hyperpigmented GBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...